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Analysis of Low Reynolds Number Airfoil Flows

J. A. Ekaterinaris,* M. S. Chandrasekhara,t and M. F. Platzenj:
Naval Postgraduate School, Monterey, California 93943-5100

Compressible steady and unsteady flowfields over a NACA 0012 airfoil at transitional Reynolds numbers are
investigated. Comparisons with recently obtained experimental data are used to evaluate the ability of a numerical
solution based on the compressible thin layer Navier-Stokes approximation, augmented with a transition model,
to simulate transitional flow features. The discretization is obtained with an upwind-biased, factorized, iterative
scheme. Transition onset is estimated using an empirical criterion based on the computed mean flow boundary-
layer quantities. The transition length is computed from an empirical formula. The incorporation of transition
modeling enables the prediction of the experimentally observed leading-edge separation bubbles. Results for
steady airfoil flows at fixed angles of attack and for oscillating airfoils are presented.

Introduction

T HE prediction of steady, inviscid flows over aerodynamic
configurations is performed routinely nowadays. The

computation of flows with separation bubbles or of fully sep-
arated flows, on the other hand, is still a very challenging
problem. For many practical applications, the assumption of
fully developed turbulent flow yields good predictions of the
flowfield. In other circumstances, such as the leading-edge
dynamic stall flow, this assumption is not valid and compu-
tations of such flows need improved methods.

A characteristic feature of the dynamic stall flow is the onset
of compressibility effects at a very low freestream Mach num-
ber of O.2.1-2 In addition, at transitional Reynolds numbers,
it has been shown3-4 that the dynamic stall events are closely
governed by the formation of a laminar separation bubble
and its subsequent bursting. In fact, the above-cited studies
demonstrate that the failure of the separated shear layer to
reattach initiates dynamic stall, leading to the formation of
the dynamic stall vortex. Further complications arise when
the locally supersonic flow forms shocks that interact with the
local boundary layer. It is important to recognize that the
scales of the flow are very small here and the flow physics is
not very clear. It is obvious that an accurate computational
study of the problem demands a proper modeling of the phys-
ics of the local compressible flow. In an effort to reach this
eventual goal, it is necessary to include the transition physics
that plays a key role in the dynamic stall process. The study
to be reported represents a step in this direction.

It is well known that prediction of the transition point and
the transition length in such strongly adverse pressure gradient
driven flows with current methods is difficult and involves
uncertainties. Although several methods are available, the
engineering prediction of transition relies on empirical for-
mulation for boundary-layer flows. Whereas these methods
have been moderately successful in steady and subsonic flows,
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in unsteady, compressible, incipiently separating flows the
challenges are formidable, and thus, much needs to be done.

One method of transition prediction uses empirical for-
mulations with an intermittency function distribution to eval-
uate an effective eddy viscosity in the transitional region.
Another popular method is the eN method. This method is
based on the small amplitude, locally parallel flow assump-
tions that enable normal mode decomposition. Computation
of the normal modes and their growth rates gives a criterion
for the transition location. The criterion is based on the ob-
servation that transition occurs when the amplification rate
reaches a value of e9 ~ 8100. The eN method accounts for
the linear stability characteristics of the flow, and pressure
gradient or curvature effects enter through the computed mean
flow. Again, an empirical method must be used to obtain an
effective eddy viscosity for the transitional flow region.

A more promising procedure for the prediction of transition
has been recently developed by Herbert and Bertolotti,5 and
is known as the parabolized stability equation (PSE) method.
The PSE method showed good agreement with direct nu-
merical simulation (DNS) results, and is currently used for
research studies on transition as an alternative to DNS. The
PSE method coupled with a Navier-Stokes solution can be
used for transition predictions in realistic geometries and
boundary conditions. This approach has the advantage of pro-
viding a complete description of the flow in the transitional
region, and it does not require empirical formulations, unlike
the other two methods.

It is the objective of this article to show that it is crucial to
model the leading-edge transitional flow in order to obtain
physically realistic solutions to flows over airfoils at transi-
tional Reynolds numbers, which include leading-edge sepa-
ration bubbles. In a previous investigation Walker et al.6 have
shown that the separation bubble occurring on a NACA 65-
213 airfoil for incompressible flow and Rec = 0.24 x 106

could be computed successfully using the Chen-Thyson7 tran-
sition model. This model gives the turbulent intermittency ytr
as a function of the computed boundary-layer quantities and
a constant G7tr. In Ref. 6 the transition constant of the model
GT(r, had to be chosen in the range between 20-40 rather
than GTtr = 1200, as originally suggested for high Reynolds
number flows. Physically, a low value of the transition con-
stant forces transition to take place over a shorter distance
than at a higher value. Recent experiments by Gostelow et
al.,8 on the effects of freestream turbulence and adverse pres-
sure gradient on boundary-layer transition, support the ob-
servation that a change in pressure gradient from zero to even
a modestly adverse level is accompanied by a severe reduction
in transition length. Even though it is expected that the com-
puted solutions are sensitive to the choice of the transition
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constant G7tr, here the transition constant is evaluated from
an empirical formula that was used before for steady flows in
Ref. 9.

Numerical Implementation
Numerical Scheme

The thin-layer approximation of the compressible, Reynolds-
averaged, Navier-Stokes equations for body-fitted coordinate
system £, 77 is used. These equations are as follows:

here, q is the conservative variable vector, q = (p, pu, pv,
e)T, F and G are the in viscid flux vectors, and S represents
the thin-layer approximation of the viscous terms in the nor-
mal direction. In the above equations all geometrical dimen-
sions are normalized with the airfoil chord length c\ the den-
sity p is normalized with the freestream density p^; the Cartesian
velocity components u, v of the physical domain are nor-
malized with the freestream speed of sound a^\ and the pres-
sure p is normalized with p^.

Computation of transitional flows requires accurate mean
flow solutions. The traditional central difference schemes for
the compressible, governing equations provide second-order
accuracy in space. Therefore, the following third-order, up-
wind-biased, factorized, iterative, implicit numerical scheme
was used here to compute the mean flow:

[/ + h€(V*Atk + [/ + +

- 67,*)

In this equation, h€ = Ar/A£, etc., A± = (dF/dQ), etc.,
are the flux Jacobian matrices, and A, V, 8 are the forward,
backward, and central difference operators, respectively. The
quantities Fi+l/2^k, G /Ar + 1/2, and Sitk+l/2 are numerical fluxes.

Time accuracy of the implicit numerical solution is obtained
by performing Newton iteration to convergence within each
time step. The approximation to Qn + \at each subiteration is
the quantity Qp . The inviscid fluxes F and G are evaluated
using Osher's9 upwinding scheme.

The numerical fluxes for a third-order accurate upwind-
biased scheme are given by

2AFf+1/2,*] =

here, F is the first-order accurate numerical flux for Osher's
scheme9 given by

1
Fi+l/2,k = ~

where ¥q = F+ + F

Qi+l

del

*, and AF± are the
corrections to obtain high-order accuracy. For the lineariza-
tion of the left-hand side (LHS) terms, the flux Jacobian
matrices A, B are evaluated by the Steger- Warming10 flux-
vector splitting. The linearization errors are reduced by sub-
iteration to convergence. Typically, two subiterations are suf-
ficient to drop the residuals two orders of magnitude during
the Newton iteration process. Accurate steady-state solutions
can be obtained even without subiteration. Two subiterations
are used for the unsteady solutions. The viscous fluxes Sijk + l/2
are computed with central differences.

Transition Modeling
For the Reynolds number of the experiment based on the

chord Rec = 0.54 x 106, it is known that a transitional flow
region exists at the leading edge. Experimental investigations
have shown that the structure of the near-wall flow dramat-
ically changes when the flow is tripped at the leading edge.
The focal point of this article is to show that it is necessary
to account for the laminar/transitional/turbulent flow behavior
in order to obtain meaningful flowfield predictions. There-
fore, the computation starts as laminar from the stagnation
point until transition onset by the empirical Michel criterion
is detected. Transition according to Michel's criterion initiates
once the Reynolds number based on the boundary-layer mo-
mentum thickness Ree is greater than the quantity T = 1.174(1.0
+ 22,400//tejr)fl*2'46» where Rex is the Reynolds number at
the specific x location from the stagnation point. The turbulent
intermittency in the transitional region is estimated with the
Chen-Thyson7 formula as follows:

ytrO) = 1 - exp -

the value of the intermittency, ytr(x) for x < xtr is zero, and
downstream from the transition point increases exponentially
to a maximum value of one, which corresponds to the fully
turbulent region. The G7tr value can alter the slope of the
ytr(x) curve and determines the extent of the transitional re-
gion. Here the Gy value is estimated from

G7tr = 213[\og(Rex) - 4.732]/3

An effective eddy viscosity for the transitional region is ob-
tained by scaling the turbulent eddy viscosity computed from
the mean flow by ytr(x). The turbulent eddy viscosity is ob-
tained using the Baldwin-Earth model. Therefore, instead
of i/turb, an effective eddy viscosity j>trans = ytr(jc)^turb is used
throughout. The limitation of the present algebraic transition
model is that it takes into account only the local flow char-
acteristics, and other effects such as curvature, upstream in-
fluence, and pressure gradient are included only through the
computed mean flow. It is also independent of the freestream
turbulence level and other flow disturbances. It requires the
evaluation of boundary-layer quantities that may be ambig-
uous or difficult to determine accurately for massively sepa-
rated flow cases. Moreover, the intermittency function has
only streamwise one-dimensional dependency and the nor-
mal-to-wall effects enter through the turbulent eddy viscosity
obtained by the turbulence model. From an implementation
point of view, however, the present transition model is quite
simple to use and it can be easily incorporated to present
computational fluid dynamics (CFD) codes and it can be com-
bined with any turbulence model.

Results and Discussion
Recently, detailed measurements over a NACA 0012, 3-

in. chord length airfoil flow have been performed by Chan-
drasekhara et al.3-4-11-12 in the NASA Ames Research Center
Fluid Mechanics Laboratory (FML) Compressible Dynamic
Stall Facility (CDSF). The measurements were obtained for
steady flow at fixed angles of incidence and for oscillatory
motion of the airfoil. Here, the oscillatory motion with a(t)
= 10° + 2° sin(a)t) in a freestream Mach number of 0.3 will
be analyzed. The reduced frequency defined as k = TrfclU^
was 0.05. For this case, the maximum angle of attack was 12
deg, which was below the static stall angle of 12.4 deg. Laser
Doppler veiocimetry (LDV) data and point diffraction inter-
ferometry (PDI) images were obtained through the oscillation
cycle. Some of the results have been discussed in Refs. 13
and 14. The key result was that a separation bubble formed
near the airfoil leading edge and it underwent changes through
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the oscillation cycle. During the upstroke, the bubble simply
grew in size. During the downstroke, the bubble decreased
in size initially. However, as the airfoil angle decreased fur-
ther, at about an angle of attack of 11.5 deg (i.e., less than
the static stall angle), the vorticity in the bubble suddenly
coalesced and was shed. At about half-a-degree later, i.e., at
a = 11 deg, the flow re-established itself, as it settled down
to the conditions dictated by the lower angle of attack. This
behavior was seen both in the vorticity distributions obtained
from the LDV velocity data, which showed that the peak
vorticity level drops at a = 11.5 deg before increasing again
at lower angles, and also, in the interferograms, which clearly
show the separated shear layer and its reattachment later in
the cycle. It appears, therefore, that this behavior of the sep-
aration bubble was caused by differences in vorticity input
into the flow during the upstroke and downstroke.

Computational Results and Comparison
with Experiments

In this article Navier-Stokes computations are presented
for flow over a NACA 0012 airfoil at the same experimental
conditions (Rec = 5.4 x 105 and M^ = 0.3), where the airfoil
is either held at a constant angle of attack, or is oscillating as
a(t) = 10° + 2° sin(otf). A 275 x 91 point grid is used for
the numerical solution. Grid points are concentrated around
the suction peak location of the leading edge to provide better
resolution of the transitional flow region. A normal spacing
of dy = 0.00001 for the second point from the airfoil surface
is used. The same computational mesh is used for both steady-
state and unsteady solutions.

Steady Flow Studies
Results are first presented for flow over the NACA 0012

airfoil at fixed angles of attack of 5 and 6 deg where the flow
is fully attached. Comparisons with the surface pressure dis-
tributions obtained by the PDI measurements are shown in
Figs. 1 and 2. In these figures, the computed 100 x Cf and
ytr(x) distributions obtained by the Chen-Thyson formula are
also shown. The agreement between computation and ex-
periment is satisfactory for this low angle of incidence, where
the flowfield is fully attached. The comparison of the mea-
sured and computed surface pressure coefficients over the
entire airfoil is shown in Fig. 2b. The overall agreement be-
tween computation and experiment is good. The pressure
coefficients are obtained from the densities measured in the
interferometry using isentropic flow equations, even in the
airfoil boundary-layer region. Single realizations of the in-
terferogram are used in the comparison. The agreement is
very good considering that the differences seen between the
experimental and computational results are in general within
the uncertainty of the experiment. Typically, the uncertainty
in the interferometry technique is one fringe. Depending upon
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Fig. 3 Comparison of the computed and measured surface pressure
coefficients; steady flow, M, = 0.3, a - 8.0 deg, Re - 0.54 x 106.

the fringe number, this translates to an uncertainty level in
Cp of up to about 0.20 per fringe (at low fringe numbers near
the trailing edge for example). The x/c displacement seen at
times is also within the range of fringe movement obtained
in the experiment. Neither the experiment nor the compu-
tation indicate a bubble at a = 5 and 6 deg.

In Figs. 3, 4, and 5, similar comparisons are shown for fixed
angles of attack of 8, 10, and 12 deg. All three angles show
the development of a separation bubble near the leading edge.
The length of the separation bubble increases with increasing
angle of attack. The ytr distributions plotted in these figures
indicate the start of transition as predicted by the computa-
tion. The surface pressure coefficient obtained from a fully
turbulent computation is also shown in Figs. 3, 4, and 5. For
the lower angle of incidence (a = 8 deg), the surface pressure
coefficient obtained from a fully turbulent solution is close to
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Fig. 5 Comparison of the computed and measured surface pressure
coefficients; steady flow, My = 0.3, a = 12.0 deg, Re = 0.54 x 106.

that obtained by the transitional solution. However, there are
significant differences (Fig. 3) between the measured and
computed surface pressure distributions over most of the up-
per surface. The transition location onset predicted by the
Michel criterion is upstream of the transition obtained in the
experiment. As a result the computed separation bubble at-
tains a smaller size. It should be noted that transition occurs
somewhere in the plateau region of the measured pressure
distribution, since the bubble forms originally from a sepa-
rating laminar boundary layer (where the plateau begins).
This shear layer undergoes transition slightly downstream and
the resulting turbulence causes it to reattach further down-
stream (end of the bubble).

For a = 8.0 deg, the transition onset by Michel criterion
is obtained at x/c = 0.015. However, if the transition onset
is specified at x/c = 0.04, which is the approximate location
where transition initiates in the experiment, then a larger
separation bubble is obtained. The agreement of the com-
puted surface pressure coefficient with the experiment im-
proves significantly when the transition onset is specified at
x/c = 0.04. A systematic study on the sensitivity of the com-
puted solution on the transition location has been carried out
in Ref. 14.

For a = 8 and 10 deg, the computed separation bubble
forms in the transitional flow region, while for a = 12 deg,
the separation bubble begins in the laminar flow region and
reattaches in the transitional flow region when compared to
experiments. The discrepancies observed at 10 and 12 deg are
similarly caused due to early initiation of transition as ob-
tained by Michel criterion. The extent of the computed sep-
aration bubbles can be clearly discerned from the computed
skin friction distributions. It is also seen that the measured
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Fig. 6 Comparison of the computed and measured surface pressure
coefficients; oscillatory flow a) a = 8.0 deg, b) a = 10.0 deg up, c)
a = 12.0 deg, and d) a = 10.0 deg down; Mx = 0.3, a(t) = 10° +
2° sin(wf), k = 0.05, Re = 0.54 x 106.
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bubbles are significantly longer than the computed ones. In-
terestingly, the fully turbulent solution fails to predict a sep-
aration bubble. This demonstrates that modeling of the tran-
sitional flow behavior is the key for capturing the major physical
flow features.

The quantitative differences between the measured and
computed bubbles are likely to be due to the deficiencies in
modeling the transition. The Chen-Thyson model has no
explicit dependence on adverse pressure gradient. However,
recently in Ref. 8, Gostelow et al. have reported measure-
ments on the effects of freestream turbulence and adverse
pressure gradients on boundary-layer transition. These data
need to be incorporated into the transition models and further
systematic computations need to be made in order to achieve
a better understanding of the complex physical mechanism of
bubble formation. At a = 12 deg, both the experiment and
the computation showed some unsteadiness. Leading-edge
separation has a significant effect on the overall development
of the downstream turbulent flowfield, and significantly af-
fects the unsteady flow results.

Oscillation a(t) = 10° -I- 2°
The unsteady solution was obtained with 20,000 time steps

for the entire cycle, corresponding to a nondimensional time
step of Ar = 0.004 or a Courant number of approximately
400. The solution progressed for three cycles and it was found
that the solution for the third cycle coincided with the second
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Fig. 7 Computed lift, drag, and pitching moment coefficients; oscil-
latory flow, M, = 0.3, a(t) = 10° + 2° sin(wf), k = 0.05, Re =
0.54 x 106.

cycle. The results presented here correspond to the second
cycle. Comparisons with the experiment at four characteristic
angles of incidence are conducted. The computed and mea-
sured surface pressure coefficients at the lowest angle of in-
cidence during the oscillatory cycle a = 8 deg are shown in
Fig. 6a. The computed pressure coefficient shown on this
figure indicates a small separation bubble which starts at x/c
= 0.025 and ends at x/c = 0.05. At a = 10 deg during the
upstroke (Fig. 6b), the length of the separation bubble in-
creases. At the peak of the oscillation cycle a = 12 deg (Fig.
6c) the leading-edge separation bubble attains the largest size.
Comparison of the computed and measured surface pressure
coefficients during downstroke at a = 10 deg also shows a
leading-edge separation bubble. Again, as in the steady flow
cases, significant differences between the computed and mea-
sured distributions are found. This is especially noticeable in
Fig. 6d for the case of a = 10 deg, on the downstroke. As
mentioned earlier, the experiment showed that light stall oc-
curred during the downstroke, which is caused by the shedding
of the leading-edge vorticity. The computed separation bub-
bles were too small to cause shedding of the vortex. This may
explain the large differences between the computation and
the experiment shown in Fig. 6d.

Finally, the computed lift, drag, and pitching moment loops
are shown in Figs. 7a-7c. Integrated loads are not available
from the experiment. The figures show significant hysteresis
effects that are not present in high Reynolds number flows
and are not obtained by a fully turbulent computation.

Conclusions
Numerical solutions for low Reynolds number flows over

a NACA 0012 airfoil were obtained. It was found that it is
crucial to model the leading-edge transitional flow behavior
in order to obtain the experimentally observed separation
bubbles. A simple empirical criterion was used for the pre-
diction of the transition onset. The turbulent intermittency
was obtained from an empirical formula based on the com-
puted mean flow boundary-layer quantities.

Comparisons of the computed and PDI-derived pressure
distributions show good agreement when no bubble is present.
The inclusion of a transition model into the Reynolds-aver-
aged Navier-Stokes equations is crucial to the successful pre-
diction of leading-edge separation bubbles. The Chen-Thy-
son model used in this study should be improved using newly
acquired data on the effect of adverse pressure gradient. Also,
the dependency of the model on empirical constants should
be reduced.
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